If it's not what You are looking for type in the equation solver your own equation and let us solve it.
g^2-9=187
We move all terms to the left:
g^2-9-(187)=0
We add all the numbers together, and all the variables
g^2-196=0
a = 1; b = 0; c = -196;
Δ = b2-4ac
Δ = 02-4·1·(-196)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28}{2*1}=\frac{-28}{2} =-14 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28}{2*1}=\frac{28}{2} =14 $
| 1/4y=3/8y-1/4 | | 128=5x-7 | | 26/33=-13/11x | | 8/9=x+1/3(7 | | 7x9=(7x10)-(7*x) | | x+(x+35)+(x-5)+1.4x=360 | | 89=x+13(7 | | x-19=-3 | | 2b^2+5=101 | | -4(2y+5)=2(4-4y)-28 | | -3+6n=-11+4n | | 1.25t=43.25 | | -7n-5n=-6n-12 | | 2/3x+2=3/4 | | 6x+2x-3=4x+12x+1 | | 3x-3.3-x=2 | | 4(w+6)-7w=27 | | 26/33=13/11(x) | | 9+4m=2m-1 | | 4k=-8k | | 5x2-4x=6 | | (1/w-1)-(1/2w-2)=(1/2w-2) | | b/5+1/6=-3 | | 5b+3-8-10=1+7b-4b | | 6p+11=5+p-p | | x=-26+16 | | 3^(2x+1)=28 | | (1/3)^2x=1/9 | | 3x-18+6=5x-2 | | (1/3)^/2x=1/9 | | r^2-23r+132=0 | | 5x^2+13×=6 |